Green Function Small Laplacian Deformations

Let Ψε(Δ)=(1+ε(Δ))1\Psi_\varepsilon(-\Delta)=(1+\varepsilon(-\Delta))^{-1} and let {φj}j0\{\varphi_j\}_{j\ge0}​ be an orthonormal L2L^2-basis of eigenfunctions of Δ-\Delta with eigenvalues λj0\lambda_j\ge0:

Δφj=λjφj.-\Delta\varphi_j=\lambda_j\varphi_j.

The spectral functional calculus gives

Ψε(Δ)f=j0Ψε(λj)fjφj,fj=f,φjL2,\Psi_\varepsilon(-\Delta)f=\sum_{j\ge0}\Psi_\varepsilon(\lambda_j)\,f_j\,\varphi_j, \qquad f_j=\langle f,\varphi_j\rangle_{L^2},

with multiplier Ψε(λ)=11+ελ\Psi_\varepsilon(\lambda)=\dfrac{1}{1+\varepsilon\lambda}. Hence the integral kernel of Ψε(Δ)\Psi_\varepsilon(-\Delta) is the series

Gε(x,y)  =  j011+ελjφj(x)φj(y).\boxed{\,G_\varepsilon(x,y)\;=\;\sum_{j\ge0}\frac{1}{1+\varepsilon\lambda_j}\,\varphi_j(x)\varphi_j(y)\,.}

This series converges in the sense of distributions and in CC^\infty away from the diagonal x=yx=y. Applying the operator to ff gives the usual kernel formula

(Ψε(Δ)f)(y)=SGε(x,y)f(x)dVx.(\Psi_\varepsilon(-\Delta)f)(y)=\int_S G_\varepsilon(x,y)\,f(x)\,dV_x.

One checks immediately that

(εΔx+1)Gε(x,y)=j1+ελj1+ελjφj(x)φj(y)=jφj(x)φj(y)=δy(x)(-\varepsilon\Delta_x+1)G_\varepsilon(x,y)=\sum_j \frac{1+\varepsilon\lambda_j}{1+\varepsilon\lambda_j}\varphi_j(x)\varphi_j(y)=\sum_j\varphi_j(x)\varphi_j(y)=\delta_y(x)

(in the distributional sense), so indeed GεG_\varepsilon​ is the Green kernel for εΔ+1-\varepsilon\Delta+1.

2) Convergence as ε0\varepsilon\downarrow0: distributional and strong operator limits

From the spectral formula,

Gε(x,y)=j11+ελjφj(x)φj(y).G_\varepsilon(x,y)=\sum_j \frac{1}{1+\varepsilon\lambda_j}\varphi_j(x)\varphi_j(y).

For each fixed jj we have 11+ελj1\dfrac{1}{1+\varepsilon\lambda_j}\to 1 as ε0\varepsilon\to0. Thus the kernel coefficients tend to those of the formal series jφj(x)φj(y)\sum_j \varphi_j(x)\varphi_j(y), which equals δy(x)\delta_y(x) in the sense of distributions. Concretely, for any test functions ϕ,ψC(S)\phi,\psi\in C^\infty(S),

Gε(x,y)ϕ(x)ψ(y)dxdy=Ψε(Δ)ϕ,ψL2ϕ,ψL2=δ(xy)ϕ(x)ψ(y)dxdy,\iint G_\varepsilon(x,y)\,\phi(x)\,\psi(y)\,dx\,dy = \langle \Psi_\varepsilon(-\Delta)\phi,\psi\rangle_{L^2} \longrightarrow \langle\phi,\psi\rangle_{L^2} = \iint \delta(x-y)\phi(x)\psi(y)\,dx\,dy,

GεδG_\varepsilon\rightharpoonup\delta as measures/distributions.

You can also state convergence in function spaces:

  • Strong L2L^2 convergence on functions. For any fixed fL2(S)f\in L^2(S), Ψε(Δ)ffL22=j(111+ελj)2fj2ε00\|\Psi_\varepsilon(-\Delta)f - f\|_{L^2}^2 = \sum_j\Big(1-\frac{1}{1+\varepsilon\lambda_j}\Big)^2 |f_j|^2 \xrightarrow{\varepsilon\to0}0 by dominated convergence (the pointwise factors are 1\le1 and tend to 0 for each fixed jj). So Ψε(Δ)I\Psi_\varepsilon(-\Delta)\to I strongly on L2L^2 (and similarly on HkH^k if fHkf\in H^k, because the multipliers are bounded by 1 uniformly).